GENERATOR DIFFERENTIAL PROTECTION RELAY STABILITY VIS-A VIS SELECTION OF CTS

BY MR. H. C. MEHTA & MR. JAY MEHTA

AT 1ST INDIA DOBLE PROTECTION AND AUTOMATION CONFERENCE, NOV 2008

GENERATOR DIFFERENTIAL

PROTECTION

RELAY STABILITY

VIS-À-VIS

SELECTION OF CTS

- GENERATOR DIFFERENTIAL PROTECTION (87G)
 - SIMPLEST BALANCE CURRENT DIFFERENTIAL
 PROTECTION :
 UNTIL IT IS MESSED UP BY EXPERTS
 - O SIMPLE SYSTEM :
 - GENERALLY, HIGH IMPEDANCE SCHEME.
 - INSTANTANEOUS OVER CURRENT RELAY WITH
 STABILIZING RESISTOR
 - CT'S WITH CLASS-PS SPECIFICATIONS.
 - SCHEME PROVIDES HIGH SENSITIVITY AND SECURITY.

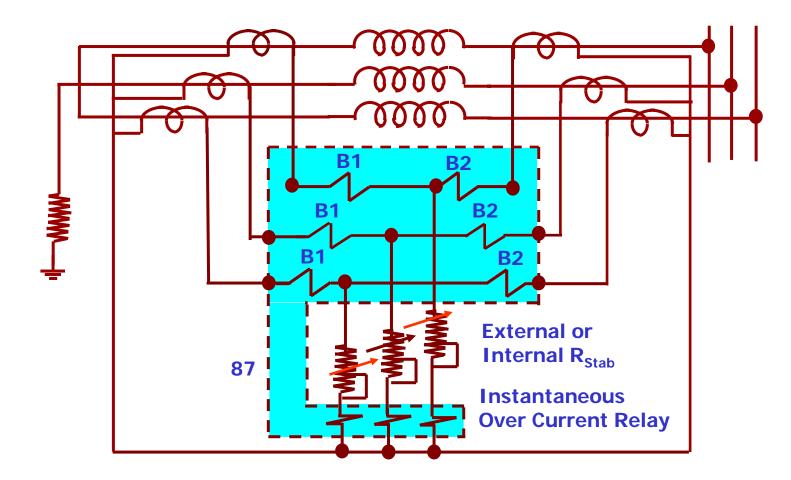
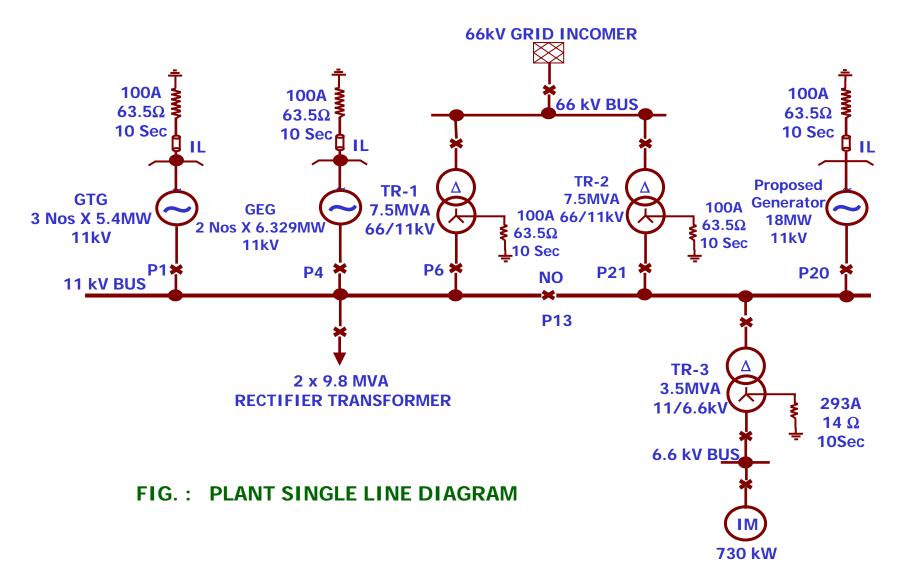


FIG : TYPICAL HIGH IMPEDANCE GENERATOR DIFFERENTIAL PROTECTION SCHEME

- PRESENT SCENARIO, & CASE STUDY
 SIMPLE, RELIABLE, SENSITIVE AND SECURED
 PROTECTION MADE COMPLEX AND UNRELIABLE,
 BY USING :
 - **O GENERAL PROTECTION CLASS CT'S**
 - LOW IMPEDANCE TYPE BIASED DIFFERENTIAL PROTECTION SCHEME.
 - TRANSFORMER DIFFERENTIAL PROTECTION RELAY IN PLACE OF GENERATOR DIFFERENTIAL PROTECTION RELAY.
 - **RESULT : SCHEME LESS SECURED AND LESS SENSITIVE.**

THEN WHY DO WE USE


O LOW IMPEDANCE PROTECTION SCHEME

O GENERAL PROTECTION CLASS CTS.

CASE STUDY : CHEMICAL PLANT

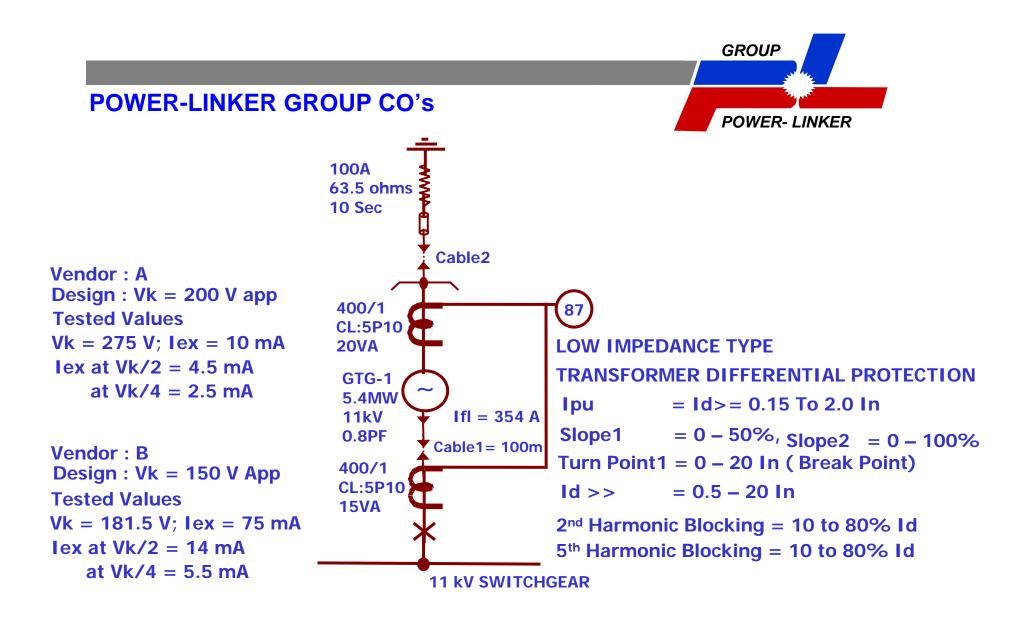


FIG. : GENERATOR DIFFERENTIAL PROTECTION SCHEME CT SPECIFICATION & SETTING RANGE

- DEFICIENCY IN ENGINEERED SCHEME
 - DIFFERENT VENDOR HAVE SUPPLIED CTS FOR TWO ENDS OF DIFFERENTIAL PROTECTION.
 - BOTH CT'S HAVE GOT DIFFERENT CHARACTERISTIC.
 - O CT SPECIFICATION ARE INADEQUATE
 - RELAY CONNECTED IS LOW IMPEDANCE TYPE, TRANSFORMER DIFFERENTIAL PROTECTION

INSTEAD OF

GENERATOR DIFFERENTIAL PROTECTION.

- DIFFERENTIAL PROTECTION SCHEME OPERATION :
 - SCHEME IS STABLE FOR STEADY STATE CONDITION AND GENERATORS EVACUATE 100% POWER.
 - **O SCHEME MAL OPERATES DURING**
 - SUDDEN LOAD THROW IN
 - SUDDEN LOAD THROW OFF
 - SWITCHING IN OF A LARGE MOTOR
 - MAL OPERATIONS ARE IN CONSISTENT.

- SCHEME TESTING :
 - SIMULATED SCHEME TESTING WAS CARRIED OUT FOR,
 - O EXTERNAL FAULT STABILITY AND
 - **O INTERNAL FAULT SENSITIVITY**
 - **0 TEST RESULTS WERE FOUND SATISFACTORY.**

- GENERATOR DIFFERENTIAL PROTECTION RELAY CHARACTERISTICS & SETTING RANGE :
 - O RELAY INSTALLED AND COMMISSIONED
 - MULTIFUNCTION DIGITAL PERCENTAGE BIASED
 DIFFERENTIAL PROTECTION RELAY FOR <u>TRANSFORMER</u>
 <u>OR GENERATOR TRANSFORMER UNIT</u> ???

WRONG APPLICATION FOR GENERATOR DIFFERENTIAL PROTECTION. **???**

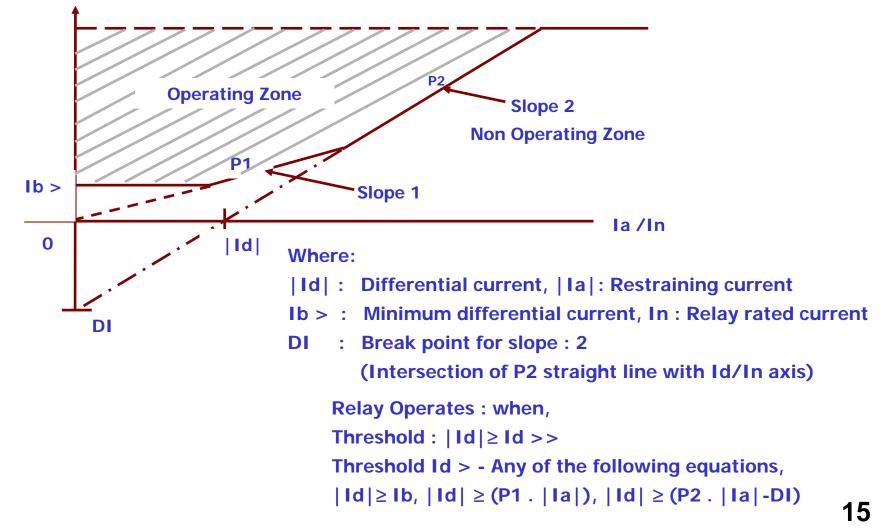
- SETTINGS FOR USER SELECTION :
 - O ABSOLUTE VALUE DIFFERENTIAL UNIT Ib.
 - PERCENTAGE BIASED DIFFERENTIAL UNIT WITH TWO SLOPES P1 AND P2.
 - OVERCURRENT PROTECTION UNIT $I_d >>$.
 - TIME DELAY OF 20 m SEC TO 99.99 SEC PROVIDED FOR ALL THRESHOLD VALUES ???
 - RELAY MANUAL INDICATES THAT THIS TIME DELAY IS PROVIDED TO AVOID TRIPPING COMMAND TO SWITCHGEAR IF CT SATURATES ???

DELAYING TRIP COMMAND

TO PREVENT MALOPERATION

DUE TO

CT SATURATION


IS IT CORRECT CONCEPT

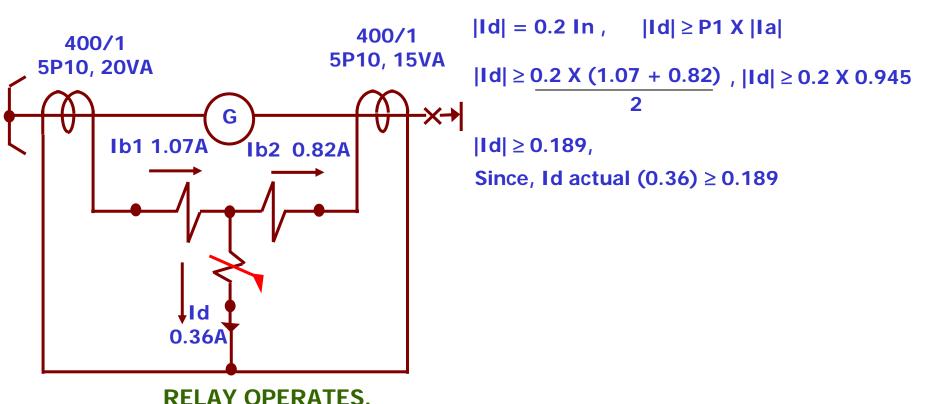
???

• DIFFERENTIAL PROTECTION RELAY TRIPPING CHARACTERISTICS

- MAL-OPERATION OF SCHEME EXPERIENCED
 DURING
 - o SWITCHING IN OR OFF

9.8 MVA RECTIFIER TRANSFORMER.

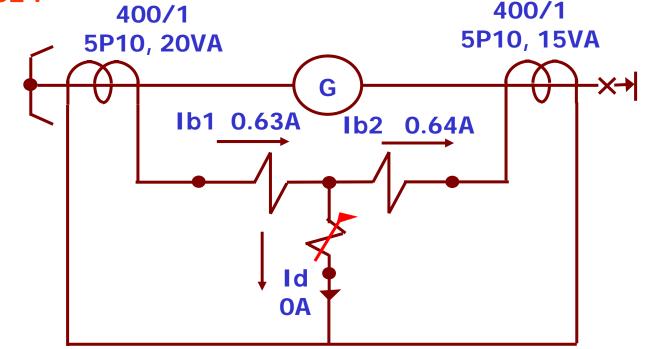
o SWITCHING IN OF


730 KW INDUCTION MOTOR.

- TYPICAL EVENT RECORDING :
 - MAL OPERATION OF THIS DIFFERENTIAL
 PROTECTION WAS RECORDED FOR A TYPICAL CASE

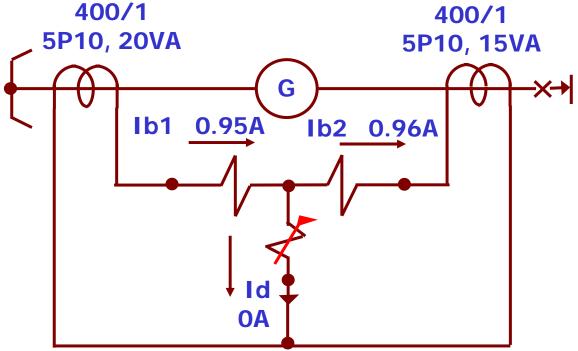
CASE : SWITCHING IN OF 9.8 MVA RECTIFIER TRANSFORMER

FIG : GTG-187G RELAY MAL-OPERATIONR-PHASE :% Slope (P1) set at 20%



CASE : SWITCHING IN OF 9.8 MVA RECTIFIER TRANSFORMER

FIG: GTG-1 87G RELAY MAL-OPERATION


Y PHASE RELAY IS STABLE BECAUSE NO SPILL CURRENT FLOWS.

GROUP POWER- LINKER

CASE : SWITCHING IN OF 9.8 MVA RECTIFIER TRANSFORMER

FIG: GTG-1 87G RELAY MAL-OPERATION

B PHASE RELAY IS STABLE BECAUSE NO SPILL CURRENT FLOWS.

• ANALYSIS

• SEQUENCE OF EVENT RECORDING INDICATES :

GROUP

- UNDER TRANSIENT CONDITION CURRENT TRANSFORMERS ARE SATURATING.
- **RESULTING INTO**,
 - UNBALANCE CURRENT IN THE DIFFERENTIAL RELAY OPERATING COIL.
 - CAUSING RELAY MAL-OPERATION.
- THIS REQUIRES CHECKING DEFICIENCY IN CT RATING SPECIFICATION.

• SPECIFICATION OF CURRENT TRANSFORMER INSTALLED AND COMMISSIONED:

O VENDOR A : NEUTRAL END	
DESIGN VALUE	FIELD TEST VALUES
CTR: 400/1	Vk = 275 V, lex = 10 mA
CL: 5P10, 20VA	lex at Vk/2 = 4.5 mA
Design Vk = 200V App.	lex at Vk/4 = 2.5 mA
O VENDOR B : PHASE END	
DESIGN VALUE	FIELD TEST VALUES
CTR: 400/1	Vk = 181.5 V, Iex = 75 mA
CTR: 400/1 CL: 5P10, 15VA	Vk = 181.5 V, Iex = 75 mA Iex at Vk/2 = 14 mA

- REVIEW OF SPECIFICATION OF CTS & FIELD TEST
 RESULTS
 - DESIGNED CT SECONDARY VOLTAGES ARE WIDELY
 DIFFERENT
 - 200 & 150 V FOR EITHER END CTS.
 - TESTED VALUE OF KNEE POINT VOLTAGE FOR EITHER END CT'S HAVE HIGH DIFFERENCE.
 - 275 V AND 181 V FOR EITHER END CTS.
 - O EXCITATION CURRENT ALSO HAS LARGE
 DIFFERENCE
 - AT VK/2 4.5 mA & 14 mA
 - AT VK/4 2.5 mA & 5.5 mA

- LARGE DIFFERENCE IN SATURATION
 - O VOLTAGE (KPV)
 - EXCITATION CURRENT I_{EX}, AT THE SATURATION VOLTAGE IS THE REASON FOR,
 - DIFFERENTIAL CURRENT THROUGH OPERATING
 COIL, THUS MAL-OPERATION OF RELAY.

- **DESIRED CT SPECIFICATION** :
 - SPECIFIC REQUIREMENT OF CURRENT TRANSFORMER SECONDARY VOLTAGE

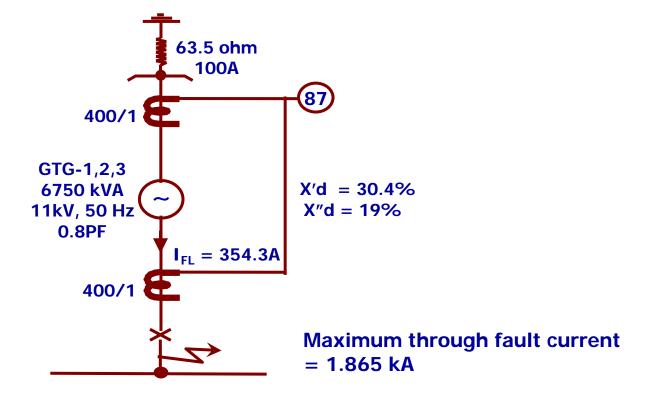


FIG: ACTUAL REQUIREMENT OF C.T. SPECIFICATION

CT SPECIFICATIONS FOR 87 RELAY

FAULT MVA = $\frac{100 \times 6.75}{19}$ = 35.52 MVA

FAULT CURRENT = 1865 AMPS @ 11 kV BASE

O CRITERIA I :

CONSIDERING EXTERNAL THROUGH FAULT CURRENT

OR

 R_{LEAD} = 0.8 Ω FOR 100 MTRS. (8Ω/KM)

VK ≥ 2 IF (
$$R_{CT}$$
 + 2 R_{L} + R_{R})
CTR
≥ 2 X 1865 (R_{CT} + 2X 0.8 +0)
400
≥ (9.325 R_{CT} + 15 V)

• CRITERIA II : CHARGING CURRENT OF RECTIFIER TRANSFORMER FULL LOAD CURRENT = $\frac{9800 \text{ KVA}}{\sqrt{3} \text{ X} 11 \text{ X} 10^3}$ = 514.4 A CHARGING CURRENT, SAY MAX 12 X FULL LOAD = 6180 A

 $Vk \ge 2 \times 6180(R_{CT} + 2 \times 0.8 + 0)$ 400 $\ge 30.9 R_{CT} + 49.44$

Select

 $Vk \ge (31 R_{CT} + 50)V$,

 $I_{ex} @V_{K} / 4 = 0.15 Min Pickup x 0.8$ 2 = 60 m Amp ≥ 60 m Amp.

- **RECOMMENDED SPECIFICATION** :
 - $VK \ge (31 R_{CT} + 50)V,$
 - $I_{EX} @ V_{K} / 4 = 60 \text{ m AMP}.$
 - ESTABLISHED THAT DUE TO INADEQUACY OF
 CURRENT TRANSFORMER RATING SPECIFICATION
 THE CTS WERE SATURATING.
 - **O RESULTING INTO MAL-OPERATION OF THE SCHEME.**

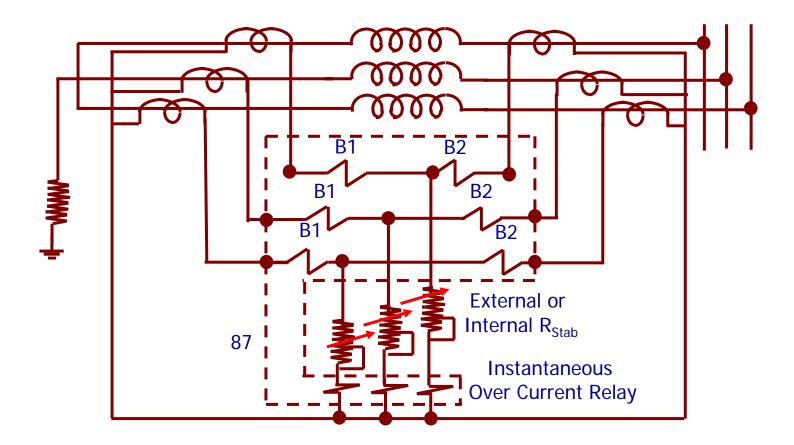
- DEFICIENCY IN RELAY SELECTION AND RELAY PROGRAMMING :
 - PERCENTAGE BIASED TRANSFORMER DIFFERENTIAL
 (MIN BIAS 20%) PROTECTION RELAY IS UTILIZED.
 - **O CHARACTERISTICS IS LOW IMPEDANCE TYPE.**
 - RELAY IS LESS SECURED, RELAY OPERATES FOR
 SPILL CURRENT FLOWING THROUGH OPERATING
 COIL UNDER TRANSIENT CONDITION DUE TO CT
 SATURATION.
 - **O RELAY IS LESS SENSITIVE.**

- CONCLUSION :
 - SCHEME WAS MALOPERATING DUE TO
 - O GENERAL PROTECTION CLASS CT'S.
 - LOW IMPEDANCE SCHEME PROTECTION RELAY NOT
 PREFERRED FOR GENERATOR DIFFERENTIAL
 PROTECTION TO ENSURE,
 - **O HIGHER SENSITIVITY &**
 - **O HIGHER SECURITY AGAINST EXTERNAL FAULT.**

POWER-LINKER GROUP CO's RECOMMENDATIONS :

TO ENSURE STABILITY AND RELIABILITY

- O CTS WITH CLASS PS SPECIFICATIONS FOR GENERATOR
 DIFFERENTIAL AND/OR FOR ANY DIFFERENTIAL (BALANCE
 CURENT PROTECTION) TO BE USED.
- EVEN IF RELAYS ARE PROVIDED WITH FEATURE TO DETECT CURRENT TRANSFORMER SATURATION AND BLOCK THE RELAY,


SELECT CT'S OF CLASS PS SPECIFICATIONS

- CONSIDER HIGH IMPEDANCE DIFFERENTIAL PROTECTION SCHEME TO ENSURE
 - HIGH SENSITIVITY OF PROTECTION
 - HIGH SECURITY FOR EXTERNAL FAULT AND TRANSIENT
 DISTURBANCES

GOOD OLD SECURED, RELIABLE HIGH IMPEDANCE

DIFFERENTIAL PROTECTION SCHEME

THANK YOU QUESTIONS ARE WELCOME

